Electroreductive Intramolecular Coupling of Nonconjugated Aromatic Ketones¹

Naoki Kise,* Takeshi Suzumoto, and Tatsuya Shono

Division of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo, Kyoto 606-01, Japan

Received December 29, 1993[®]

The electroreduction of nonconjugated aromatic ketones gave intramolecularly coupled products. The best result was obtained using an Sn cathode in i-PrOH containing tetraalkylammonium salt as a supporting electrolyte. This reductive cyclization proceeded with remarkable stereoselectivity, and the cis isomer was obtained exclusively. A variety of new bi- and polycyclic compounds were synthesized. The reaction mechanism was studied, and it was suggested that the anion radical generated by one-electron transfer to a carbonyl group attacks an aromatic ring intramolecularly. The choice of counter cation of the anion radical was critical for the reductive cyclization. Other reductive methods employing metal reducing agents were also studied. Reduction with Na in HMPA-THF gave the same cyclized product, though the yield was lower than that with the electroreduction.

Reductive cross-coupling of a carbonyl group with an unsaturated system is a useful and important reaction. In our previous studies, the electroreductive intramolecular coupling of a carbonyl group with a nonactivated carboncarbon double² or triple bond,³ or a carbon-nitrogen triple bond,⁴ and the intermolecular coupling of a carbonyl group with a nonactivated carbon-carbon double bond,⁵ or with a carbon-nitrogen double bond⁶ have been described.

It has been found in the present study that a novel intramolecular coupling of nonconjugated aromatic ketones is promoted by electroreduction, and cyclized products are obtained stereoselectively. This type of reductive cyclization is hitherto unknown and provides a new synthetic method for bi- and polycyclic compounds. The use of a tetraalkylammonium salt as an electrolyte is essential for this cyclization. The reaction mechanism of this electroreductive cyclization and other reductive methods with metal reducing agents were also studied.

Results and Discussion

A typical reaction is shown in eq 1. The reaction

conditions were surveyed using 5-phenyl-2-pentanone (1), and the results are summarized in Table 1. This intramolecular coupling was highly influenced by the choice of cathode material, solvent, and supporting electrolyte. Tin was the best cathode, while Cu, Ag, Pb, and Zn cathodes

run	cathode	solvent	electrolyte	% yield of 2 ª	% yield of 3 ª
1	Sn	i-PrOH	Et ₄ NOTs	70	7
2	Cu	i-PrOH	Et ₄ NOTs	54	6
3	Ag	i-PrOH	Et ₄ NOTs	51	15
4	Pď	i-PrOH	Et ₄ NOTs	48	13
5	Zn	i-PrOH	Et₄NOTs	40	13
6	\mathbf{Sn}	t-BuOH	Et ₄ NOTs	64	12
7	\mathbf{Sn}	EtOH	Et ₄ NOT _B	26	52
8	Sn	DMF	Et ₄ NOTs	28	26
9	Sn	THF	Bu ₄ NClO ₄	14	28
10	\mathbf{Sn}	dioxane/	Et ₄ NOTs	50	6
		i-PrOH (1:1)	-		
11	Sn	i-PrOH	Bu ₄ NClO ₄	68	8
12	Sn	i-PrOH	Bu ₄ NBr	65	8
13	Sn	i-PrOH	LiClO ₄	0	60

Table 1. Electroreduction of 5-Phenyl-2-pentanone (1)

^a Isolated yields. Electroreduction of 1 (5 mmol) was carried out in a solvent (40 mL) containing a supporting electrolyte (10 g) using a divided cell.

gave somewhat poorer results (runs 1-5). Other cathode materials such as Pt, Ni, and Ti gave no reduced product. As a solvent, i-PrOH was the best. t-BuOH resulted in a decrease in the yield of 2 (compare run 1 with run 6), whereas EtOH, DMF, and THF gave rather poor results (runs 7-10). The effect of the cation of the supporting electrolyte was interesting. Tetraalkylammonium salts such as Et₄NOTs and Bu₄NClO₄ gave 2 in 65-70% yields (runs 1, 11, and 12), while no cyclized product was produced when $LiClO_4$ was used as the electrolyte (run 13). Consequently, the best result (2: 70%, 3: 7%) was obtained when the electroreduction was carried out in i-PrOH containing Et₄NOTs using a divided cell equipped with a ceramic diaphragm and an Sn cathode (run 1). The electroreduction could also be carried out without a diaphragm, though the yield of 2 was slightly decreased (**2**: 62%, **3**: 13%).

The cyclized product 2 was a single stereoisomer (>99%) on the basis of ¹H NMR and GLC analyses. The hydroxyl group and the hydrogen on C-10 are located cis to one another in 2, since the ¹³C NMR spectrum of the hydrogenated product 4 was the same as reported data⁷ (eq 2). Similar cis-stereoselectivity has been observed in

[•] Abstract published in Advance ACS Abstracts, February 15, 1994. (1) Preliminary report: Shono, T.; Kise, N.; Suzumoto, T.; Morimoto,

T. J. Am. Chem. Soc. 1986, 108, 4676. (2) (a) Shono, T.; Mitani, M. J. Am. Chem. Soc. 1971, 93, 5284. (b) Shono, T.; Nishiguchi, I.; Ohmizu, H.; Mitani, M. J. Am. Chem. Soc. 1978, 100, 545

 ⁽³⁾ Shono, T.; Nishiguchi, I.; Ohmizu, H. Chem. Lett. 1976, 1233.
 (4) (a) Shono, T.; Kise, N. Tetrahedron Lett. 1990, 31, 1303. (b) Shono, T.; Kise, N.; Fujimoto, T.; Tominaga, N.; Morita, H. J. Org. Chem. 1992,

^{57, 7175.} (5) Shono, T.; Kashimura, S.; Mori, Y.; Hayashi, T.; Soejima, T.; Yamaguchi, Y. J. Org. Chem. 1989, 54, 6001.

⁽⁶⁾ Shono, T.; Kise, N.; Fujimoto, T. Tetrahedron Lett. 1991, 32, 525.

⁽⁷⁾ Ayer, W. A.; Browne, L. M.; Fung, S.; Stothers, J. B. S. Org. Magn. Reson. 1978, 11, 73.

our previously reported electroreductive cyclization of nonconjugated olefinic ketones.²

It was found that a methyl group located between the phenyl and carbonyl groups did not inhibit the cyclization and also that the products 7a-c were formed as a single isomer (eq 3). The stereoconfigurations of 7a-c were

studied by analyzing their ¹³C NMR spectra and those of 2 and 4⁷ (Table 2). The large downfield shifts (8–9 ppm, italicized in Table 2) of the C-3 carbon in 7a, C-2 and C-4 carbons in 7b, and C-3 carbon in 7c show that each methyl group of R¹–R³ in 7a–c is located in an equatorial position.⁸ The downfield shifts of C-5 carbon in 7a and C-1 carbon in 7c are smaller (2–4 ppm), since these carbons are quaternary.¹⁰ The upfield shifts (6–7 ppm) of two methyl groups in 7c are due to γ -effect between these methyl groups. Consequently, the stereostructures of 7a–c are assigned as shown in eq 3. These assignments are consistent with the ¹H NMR NOE experiments of 7a and 7c.¹²

Other starting materials and products, the latter being obtained under the same reaction condition as run 1 in Table 1, are summarized in Tables 3 and 4. Polycyclic products were obtained by this electroreductive coupling (Table 3). Although the stereoconfigurations of the cyclized products were not determined, their ¹H and ¹³C NMR spectra showed that each of those shown in Table 3 and many of those in Table 4 was a single stereoisomer.

(8) The changes of ¹³C NMR chemical shifts induced by substitution of a methyl group on cyclohexane are as follows.⁹

methyl group	C-α	C-β	C-γ	C-δ
equatrial	5.0	<u>9.0</u>	0	-0.2
axial	1.4	5.4	-6.4	0

(9) Abraham, R. J.; Loftus, P. Proton and Carbon-13 NMR Spectroscopy; Heyden: London, 1978.

(10) Similar result was observed between ¹³C NMR of 1-methyl-1-cyclohexanol and that of 1,2-dimethyl-1-cyclohexanol.¹¹
 (11) Grenier-Loustalot, M. F.; Zahidi, A.; Bonastre, J.; Grenier, P. Bull.

(11) Grenier-Loustaiot, M. F.; Zanidi, A.; Bonastre, J.; Grenier, F. Butt. Soc. Chim. Fr. 1979, I-229.

(12) No NOE enhancement could be observed between H-10 and CH₃-4 in 7a and between H-10 and CH₃-2 in 7c.

Table 2. ¹³C NMR Chemical Shifts of 1, 7a-c, and 4^a

						-,
compound	C-1	C-2	C-3	C-4	C-5	Me
2	74.43	41.98	24.15	34.89	135.96	21.78
7a	74.83	41.61	<i>33.12</i>	36.87	139.64	17.46, 21.76
7b	74.34	50. 79	30.64	43.68	135.52	22.21, 22.55
7c	76.75	43.70	32.39	34.91	136.11	15.14, 15.79
4 ^b	72.71	42.86	23.35	34.59	39.42	21.24

^a In ppm from internal TMS in CDCl₃. ^b Reference 7.

Table 3. Electroreduction of β - or γ -Aryl Ketones

^a Isolated yields. ^b See ref 13.

It is likely that each cyclized product has the same stereoconfiguration as 2. As shown in Table 4, a metasubstituted electron-donating group (OMe, Me) hindered the cyclization considerably, whereas para-substitution and a meta-substituted electron-withdrawing group (CN, CO_2Me) did not inhibit it. These results suggest that the active species reacting with the aromatic ring has an anionic character. The meta substituent would show a more remarkable effect on the cyclization than ortho and para substituents, since the intramolecular coupling of meta-substituted 1 takes place at the para or ortho position to the meta substituent on the aromatic ring.

This cyclization was limited to six-membered ring formation, and 4-phenyl-2-butanone and 6-phenyl-2**Electroreduction of Nonconjugated Aromatic Ketones**

Table 4.	Electroreduction of Ar-Substituted
	5.Phenyl.2.nentenone

^a Isolated yields. ^b Since cyclized products were obtained as a mixture of several olefinic and saturated compounds, the yield of all cyclized products were determined after hydrogenation (H_2 , Pd/C) of the crude products. ^c See ref 14.

hexanone gave noncyclized alcohols under the same reaction conditions. Sterically hindered ketones and aromatic ketones also gave noncyclized products (Scheme 1).

Reduction of 1 Using Nonelectrochemical Methods. Since this type of reductive cyclization is a new reaction, it is instructive to compare the electroreductive methodology with other methods using metal reducing agents (Table 5). The reduction of 1 with Zn, Sn, or Na in i-PrOH gave noncyclized alcohol 3 as the sole product (runs 2–4), and the presence of tetraalkylammonium salts did not affect these reactions. The reduction with Na in wet Et_2O^{15} also gave 3 (run 5), and that in liquid NH₃-THF¹⁶ afforded the product 41 in which the aromatic ring of 3 was further reduced (run 6). The reduction with TiCl₄-Zn in THF¹⁷ gave 3 and homo-coupled product 42 (run 7). Recently, it is reported that SmI₂ is effective for the intramolecular

Table 5. Reduction of 5-H	Phenyl-2-pentanone (1)
---------------------------	------------------------

				yield, % ^a		
run	reducing agent	condition	2	3		
1	electroreduction	Et4NOTs/i-PrOH, 25 °C	70	7		
2	Zn	NaOH/i-PrOH, 65 °C	0	84		
3	Sn	NaOH/i-PrOH, 65 °C	0	85		
4	Na	i-PrOH, 25 °C	0	81		
5	Na	wet Et ₂ O, 25 °C	0	90		
6	Na	liquid NH ₃ /THF, -70 °C	0	0 ^b		
7	TiCl ₄ -Zn	THF, 65 °C	0	35°		
8	SmI_2	t-BuOH-HMPA-THF, 0 °C	0	traced		
9	Na	HMPA-THF (2:1), 0 °C	42	17		

^a Isolated yields. ^b 41 was obtained in 95% yield. ^c 42 was also obtained in 34% yield. ^d Starting 1 was recovered.

coupling of ketones with olefins or alkynes,¹⁸ though the reduction of 1 with SmI_2 in t-BuOH-HMPA-THF resulted in no reaction (run 8). On the other hand, the cyclized

⁽¹³⁾ Naphthalene and aliphatic ketones have similar reduction potentials. On the other hand, anthracene is more easily reduced than aliphatic ketones and affords 9,10-dihydroanthracene under the same condition. It therefore seems that the electroreductive reduction of 19 proceeds through the formation of i and its subsequent cyclization. Another structure iii formed through ii is unlikely for the cyclized product instead of 20. Since isolated benzene ring is inert under the present condition, ii cannot be reduced to iii.

(14) The structures iv instead of 35 and 40 are excluded, since no spiro carbon is observed in their $^{13}{\rm C}$ NMR spectra.

product 2 (42%) was obtained together with 3 (17%) by the reduction with Na in HMPA-THF¹⁶ (run 9).

Reaction Mechanism. Undoubtedly, the electroreductive cyclization of 1 is initiated by the reduction of the carbonyl group, since alkylbenzenes were completely inert under the present reaction conditions whereas ketones were easily reduced to the corresponding alcohols under the same conditions. It is unlikely that anion attacks nonactivated aromatic ring. Therefore, the key intermediate in this reaction is a radical or an anion radical species.

The overall reaction scheme of the electroreductive cyclization of 1 is depicted in Scheme 2. The anion radical A generated by one-electron transfer to the carbonyl group of 1 attacks the aromatic ring intramolecularly to give cis intermediate B rather than trans C due to the electronic repulsion between anionic oxygen atom and π -electrons of phenyl group. Another radical species **D**, which is formed by protonation to anion radical A, may be unlikely. since the electroreductive cyclization is strongly affected by the counter cation of supporting electrolyte. In addition, the effect of a substituent on the aromatic ring shows that the active species attacking the aromatic ring has an anionic character as described above. The stereoselectivity observed in this cyclization is much higher (cis/ trans > 99) than that reported for the typical radical

cyclization (cis/trans ~ 3.8).¹⁹ This extremely high stereoselectivity can be well explained by the strong repulsion between the two negative centers as shown in Scheme 2. The stereoselectivity in the cyclization of 6a-c is elucidated by assuming the *pseudo*-chair intermediate **B** in which each methyl group of $R^{1}-R^{3}$ is located at an equatorial position.

The result of the electroreduction of 1 in (CH₃)₂CHOD shows that the product 2 is formed from **B** not through hydrogen abstraction from solvent but further one-electron transfer of **B** and subsequent protonation of the resulting anion (Scheme 3).

When the aromatic ring is a polynuclear hydrocarbon (14, 17, and 19 in Table 3), the possibility that the reduction of the aromatic ring is the initial step cannot necessarily be excluded.13

A critical factor for the present cyclization is that the counter cation of the electrogenerated anion radical A is

⁽¹⁵⁾ Eakin, M.; Martin, J.; Parker, W. Chem. Commun. 1965, 206.
(16) House, H. O.; Giese, R. W.; Kronberger, K.; Kaplan, J. P.;
Simenone, J. F. J. Am. Chem. Soc. 1970, 92, 2800.
(17) Mukaiyama, T.; Sato, T.; Hanna, J. Chem. Lett. 1973, 1041.

^{(18) (}a) Molander, G. A.; Kenny, C. J. Am. Chem. Soc. 1989, 111, 8236. (b) Enholm, E. J.; Trivellas, A. Tetrahedron Lett. 1989, 30, 1063. (c) Shim, S. C.; Hwang, J.-T.; Kang, H.-Y.; Chang, M. H. Tetrahedron Lett. 1989, 31, 4765.

^{(19) (}a) Beckwith, A. L. J.; Blair, I.; Phillipou, G. J. Am. Chem. Soc. 1974, 96, 1613. (b) Garst, J. F.; Hines, J. B. Ibid. 1984, 106, 6443.

Scheme 4

a quaternary ammonium cation (Scheme 4). Since the counter cation of \mathbf{A}' generated by the electroreduction using a metal salt as an electrolyte (Table 1, run 13) or by the reduction with a metal reducing agent (Table 5, runs 2-7) is a metal cation, the covalent nature of the bond between the anion radical and the counter cation is much less in A than in A'. Hence, the further electron transfer to A is slower than the cyclization of A, and the cyclized product 2 is obtained mainly. On the other hand, the electron transfer to A' is faster than cyclization, and the noncyclized alcohol 3 is formed exclusively. In the reduction with Na-HMPA, the covalent nature between the anion radical and Na cation is decreased by the strong solvation of HMPA to the Na cation and it is therefore possible for the anion radical to attack the aromatic ring intramolecularly. The electroreductive method can easily and effectively achieve the cyclization without using highly toxic HMPA.

Experimental Section

¹H NMR spectra were measured on a Varian EM-390 (90 MHz). ¹³C NMR spectra were measured on a JEOL JNM-GX400 (operating at 100 MHz).

Starting Materials. 5-Phenyl-2-pentanone (1)²⁰ was synthesized in the usual way by alkylation of ethyl acetoacetate with (2-bromoethyl)benzene and subsequent decarbethoxylation,²¹ and 6a,b, 12, 14, 17, 19, 21, 23, 26, 28, 30, and 32 were prepared by the same method. Other nonconjugated aromatic ketones, 8²² and 10,²³ were obtained according to known methods.

6a: bp 88 °C (6 mmHg); IR (neat) 1720, 1604, 1499, 968, 915, 770, 705 cm⁻¹; ¹H NMR (CCL) δ 1.24 (d, 3 H, J = 7 Hz), 1.46–2.40 (m, 4 H), 1.93 (s, 3 H), 2.44–2.90 (m, 1 H), 6.82–7.39 (br s, 5 H). Anal. Calcd for C₁₂H₁₆O: C, 81.77; H, 9.15. Found: C, 81.72; H, 9.18.

6b: Rf 0.55 (hexane-AcOEt, 5:1); IR (neat), 1716, 1605, 1585, 1499, 964, 945, 915, 845, 782, 720, 700 cm⁻¹; ¹H NMR (CCL) δ 0.90 (d, 3 H, J = 6 Hz), 2.01 (s, 3 H), 2.04–2.81 (m, 5 H), 6.80–7.51 (br s, 5 H). Anal. Calcd for $C_{12}H_{16}O$: C, 81.77; H, 9.15. Found: C, 81.69; H, 9.10.

6c: Rf 0.6 (hexane-AcOEt, 5:1); IR (neat) 1720, 1608, 1502, 754, 702 cm⁻¹; ¹H NMR (CCL) δ 1.07 (d, 3 H, J = 5 Hz), 1.30–2.75 (m, 5 H), 2.01 (s, 3 H), 7.06 (s, 5 H). Anal. Calcd for $C_{12}H_{16}O$: C, 81.77; H, 9.15. Found: C, 81.65; H, 9.13.

8: bp 85 °C (2 mmHg); IR (neat) 1714, 1603, 1499, 745, 698 cm⁻¹; ¹H NMR (CCl₄) δ 1.05 (3 H, J = 7.5 Hz), 1.70–3.00 (m, 8 H), 7.57 (s, 5 H). Anal. Calcd for C₁₂H₁₆O: C, 81.77; H, 9.15. Found: C, 81.65; H, 9.07.

14: R_f 0.3 (hexane-AcOEt, 5:1); IR (neat) 1712, 1630, 1600, 1508, 896, 854, 820, 748 cm⁻¹; ¹H NMR (CCL) δ 1.75-2.15 (m, 2 H), 2.02 (s, 3 H), 2.35 (t, 2 H, J = 4.5 Hz), 2.74 (t, 2 H, J = 4.5Hz), 7.17-7.84 (m, 7 H). Anal. Calcd for C₁₅H₁₆O: C, 84.87; H, 7.60. Found: C, 84.80; H, 7.58.

17: bp 128 °C (2 mmHg); IR (neat) 1700, 1600, 1550, 800, 780 cm⁻¹; ¹H NMR (CCl₄) δ 2.01 (s, 3 H), 2.55–2.90 (m, 2 H), 3.10–3.45 (m, 2 H), 7.10-8.10 (m, 7 H). Anal. Calcd for C₁₄H₁₄O: C, 84.81; H, 7.12. Found: C, 84.76; H, 7.16.

19: mp 87-88 °C; IR (KBr) 1714, 1675, 1626, 1500, 955, 883, 878, 852, 839, 788, 733 cm⁻¹; ¹H NMR (CCl₄) δ 2.21 (s, 3 H), 2.79-3.05 (m, 2 H), 3.72-4.05 (m, 2 H), 7.32-7.68 (m, 4 H), 7.90-8.44 (m, 5 H). Anal. Calcd for C₁₂H₁₆O: C, 87.06; H, 9.49. Found: C, 87.01; H, 9.50.

21: bp 135 °C (1 mmHg); IR (neat) 1718, 1540, 820 cm⁻¹; ¹H NMR (CCl₄) δ 1.60-2.70 (m, 6 H), 1.98 (s, 3 H), 2.26 (s, 3 H), 6.85 (br s, 4 H). Anal. Calcd for $C_{12}H_{16}O$: C, 81.77; H, 9.15. Found: C, 81.67; H, 9.11.

23: R_f 0.6 (hexane-AcOEt, 5:1); IR (neat) 1720, 1612, 1509, 1483, 880, 812, 784, 700 cm⁻¹; ¹H NMR (CCl₄) δ 1.45-2.46 (m, 4 H), 2.00 (s, 3 H), 2.22 (s, 3 H), 2.25-2.79 (m, 2 H), 6.56-7.18 (m, 4 H). Anal. Calcd for C₁₂H₁₆O: C, 81.77; H, 9.15. Found: C, 81.76; H, 9.15.

26: Rf 0.5 (hexane-AcOEt, 5:1); IR (neat) 1721, 1512, 1501, 815, 765, 744 cm⁻¹; ¹H NMR (CCL₄) δ 1.42-2.58 (m, 4 H), 2.00 (s, 3 H), 2.15 (s, 3 H), 2.43-2.84 (m, 2 H), 6.60-7.18 (m, 4 H). Anal. Calcd for C₁₂H₁₆O: C, 81.77; H, 9.15. Found: C, 81.69; H, 9.20.

28: Rf 0.4 (hexane-AcOEt, 5:1); IR (neat) 1717, 1614, 1587, 1515, 835, 700 cm⁻¹; ¹H NMR (CCL) δ 1.55-2.03 (m, 2 H), 1.98 (s, 3 H), 2.27 (t, 2 H, J = 6 Hz), 2.49 (t, 2 H, J = 7 Hz), 3.66 (s, 3 Hz)

⁽²⁰⁾ Ramart-Lucas, M.; Labaune, L. Ann. Chim. 1931, 16, 295.
(21) Pond, D. M.; Cargill, R. L. J. Org. Chem. 1967, 32, 4064.
(22) Cason, J.; Kraus, K. W. J. Org. Chem. 1961, 26, 1768.

⁽²³⁾ Stork, G.; Dowd, S. R. J. Am. Chem. Soc. 1963, 85, 2178.

3 H), 6.57 (d, 2 H, J = 9 Hz), 6.90 (d, 2 H, J = 9 Hz). Anal. Calcd for $C_{12}H_{16}O_2$: C, 74.97; H, 8.39. Found: C, 74.89; H, 8.40.

30: bp 110 °C (0.5 mmHg); IR (neat) 1720, 1607, 1590, 1495, 789, 700 cm⁻¹; ¹H NMR (CCl₄) δ 1.65–2.13 (m, 2 H), 2.02 (s, 3 H), 2.33 (t, 2 H, J = 6 Hz), 2.54 (t, 2 H, J = 7 Hz), 3.72 (s, 3 H), 6.39–6.75 (m, 3 H), 6.82–7.13 (m, 1 H). Anal. Calcd for C₁₂H₁₆O₂: C, 74.97; H, 8.39. Found: C, 74.92; H, 8.36.

32: R_f 0.6 (hexane-AcOEt, 5:1); IR (near) 1719, 1600, 1500, 830, 795, 660 cm⁻¹; ¹H NMR (CCl₄) δ 1.60–2.10 (m, 2 H), 2.02 (s, 3 H), 2.33 (t, 2 H, J = 6 Hz), 2.56 (t, 2 H, J = 7 Hz), 6.98 (d, 2 H, J = 8.5 Hz), 7.17 (d, 2 H, J = 8.5 Hz). Anal. Calcd for C₁₂H₁₅-OCl: C, 68.41; H, 7.18; Cl, 16.83. Found: C, 68.45; H, 7.24; Cl, 16.67.

Synthesis of 34, 36, and 39. To a solution of LDA (50 mmol) in 60 mL of hexane-THF (1:1) was added a solution of *p*-toluonitrile (40 mmol) in THF (20 mL) at 0 °C. After stirring for 1 h, 1-bromo-3-butanone ethylene ketal²⁴ (50 mmol) was added, and the mixture was stirred for 3 h at this temperature. After 1 N HCl (100 mL) was added, the reaction mixture was stirred at room temperature overnight. The mixture was extracted with CH₂Cl₂. The product 34 was isolated by column chromatography on silica gel in a 85% yield. The other aromatic ketones 36 (58%) and 39 (23%) were prepared by the same method.

34: $R_f 0.55$ (hexane-AcOEt, 2:1); IR (neat) 2240, 1719, 1615, 1512, 840 cm⁻¹; ¹H NMR (CCl₄) δ 1.67–2.10 (m, 2 H), 2.06 (s, 3 H), 2.36 (t, 2 H, J = 7 Hz), 2.66 (t, 2 H, J = 8 Hz), 7.23 (d, 2 H, J = 8 Hz), 7.53 (d, 2 H, J = 8 Hz). Anal. Calcd for C₁₂H₁₈NO: C, 76.98; H, 7.00; N, 7.48. Found: C, 76.85; H, 7.05; N, 7.38.

36: R_f 0.5 (hexane-AcOEt, 2:1); IR (neat) 2235, 1715, 1602, 1586, 1490, 800, 692 cm⁻¹; ¹H NMR (CCl₄) δ 1.62–2.11 (m, 2 H), 2.07 (s, 3 H), 2.40 (t, 2 H, J = 6 Hz), 2.66 (t, 2 H, J = 7 Hz), 7.15–7.62 (m, 4 H). Anal. Calcd for C₁₂H₁₃NO: C, 76.98; H, 7.00; N, 7.48. Found: C, 76.81; H, 7.07; N, 7.34.

39: bp 150 °C (6 mmHg); IR (neat) 1720, 1715, 1615, 767, 712 cm⁻¹; ¹H NMR (CCl₄) δ 1.56–2.10 (m, 2 H), 2.12 (s, 3 H), 2.15–2.90 (m, 4 H), 3.89 (s, 3 H), 7.22 (d, 2 H, J = 8 Hz), 7.97 (d, 2 H, J = 8 Hz). Anal. Calcd for C₁₃H₁₆O: C, 70.89; H, 7.32. Found: C, 70.77; H, 7.28.

Typical Procedure for Electroreduction. A solution of Et₄NOTs (10 g) in i-PrOH (40 mL) was put into a divided cell (50-mL beaker) equipped with an Sn cathode (5×10 cm²), a carbon rod anode, and a ceramic diaphragm. To the catholyte was added ketone 1 (5 mmol). Electrolysis was carried out at constant current of 0.2 A until all of the ketone was consumed (4 F/mol). The catholyte was poured into water (200 mL) and extracted with Et₂O. The products 2 and 3 were isolated by column chromatography on silica gel. The noncyclized product 3 was confirmed by the comparison with the sample prepared from 1 by LAH reduction.

2: $R_f 0.7$ (hexane-AcOEt, 2:1); mp 102-103 °C; UV (hexane) λ_{max} 210 nm (ϵ 2043); IR (KBr) 3350, 1660, 1650, 958, 920, 908, 865, 785, 680 cm⁻¹; ¹H NMR (CCl₄) δ 0.99 (s, 3 H), 1.12-2.30 (m, 7 H), 2.52-2.68 (br s, 3 H), 5.32-5.45 (br s, 1 H), 5.61-5.95 (m, 2 H); ¹³C NMR (CDCl₃) δ 21.78 (q), 24.15 (t), 26.76 (t), 34.89 (t), 41.98 (t), 48.88 (d), 74.43 (s), 118.27 (d), 124.07 (d), 125.71 (d), 135.96 (s). Anal. Calcd for C₁₁H₁₆O: C, 80.44; H, 9.82. Found: C, 80.34; H, 9.83.

7a: $R_f 0.5$ (hexane-AcOEt, 5:1); mp 79-82 °C; IR (KBr) 3350, 957, 944, 789, 681 cm⁻¹; ¹H NMR (CCl₄) δ 0.97 (s, 3H), 1.00 (d, 3 H, J = 5 Hz), 1.32-2.03 (m, 6 H), 2.51-2.70 (m, 3 H), 5.11-5.46 (m, 1 H), 5.65-5.72 (br s, 2 H); ¹³C NMR (CDCl₃) δ 17.46 (q), 21.76 (q), 26.81 (t), 33.12 (t), 36.87 (d), 41.61 (t), 49.39 (d), 74.83 (s), 115.42 (d), 124.35 (d), 125.77 (d), 139.64 (s). Anal. Calcd for C₁₂H₁₈O: C, 80.85; H, 10.18. Found: C, 80.84; H, 10.21.

7b: $R_f 0.4$ (hexane-AcOEt, 5:1); mp 44-46 °C; IR (KBr) 3350, 960, 935, 903, 822, 695 cm⁻¹; ¹H NMR (CCL) δ 0.92 (d, 3 H, J =7 Hz), 0.93 (s, 3 H), 0.96-2.28 (m, 6 H), 2.44-2.68 (m, 3 H), 5.22-5.47 (m, 1 H), 5.65-5.87 (br s, 2 H); ¹³C NMR (CDCl₃) δ 22.21 (q), 22.55 (q), 26.87 (t), 30.64 (d), 43.68 (t), 48.33 (d), 50.79 (t), 74.34 (s), 118.42 (d), 124.07 (d), 125.74 (d), 135.52 (s). Anal. Calcd for C₁₂H₁₈O: C, 80.85; H, 10.18. Found: C, 80.96; H, 10.24.

7c: R_f 0.6 (hexane-AcOEt, 5:1); IR (neat) 3350, 1650, 958, 919, 783, 678 cm⁻¹; ¹H NMR (CCl₄) δ 0.89 (s, 3 H), 0.94 (d, 3 H, J =

(24) Geriach, H.; Kunzler, P. Helv. Chim. Acta 1977, 60, 638.

6 Hz), 1.04–2.30 (m, 6 H), 2.53–2.76 (br s, 3 H), 5.30–5.48 (m, 1 H), 5.73–5.90 (br s, 2 H); 13 C NMR (CDCl₃) δ 15.14 (q), 15.79 (q), 26.80 (t), 32.39 (t), 34.91 (t), 43.70 (d), 49.80 (d), 76.75 (s), 118.05 (d), 124.32 (d), 125.94 (d), 136.11 (s). Anal. Calcd for C₁₂H₁₈O: C, 80.85; H, 10.18. Found: C, 80.76; H, 10.12.

9: R_f 0.4 (hexane-AcOEt, 5:1); IR (neat) 3400, 986, 966, 912, 880, 870, 860, 820, 784, 680 cm⁻¹; ¹H NMR (CCl₄) δ 0.78 (t, 3 H, J = 7.5 Hz), 0.90–2.87 (m, 12 H), 5.27–5.53 (m, 1 H), 5.57–5.92 (m, 2 H); ¹³C NMR (CDCl₈) δ 6.43 (q), 23.28 (t), 24.80 (t), 26.60 (t), 34.74 (t), 36.23 (t), 49.62 (d), 75.79 (s), 118.53 (d), 123.92 (d), 125.99 (d), 136.04 (s). Anal. Calcd for C₁₂H₁₈O: C, 80.85; H, 10.18. Found: C, 80.67; H, 10.15.

11: $R_f 0.5$ (hexane-AcOEt, 5:1); mp 111-112 °C; UV (hexane) $\lambda_{max} 210 \text{ nm} (\epsilon 3027)$; IR (KBr) 3350, 988, 960, 893, 823, 773 cm⁻¹; ¹H NMR (CCl₄) δ 1.03-2.93 (m, 11 H), 5.51-5.85 (m, 1 H), 5.91-6.30 (m, 2 H); ¹³C NMR (CDCl₈) δ 20.15 (t), 21.44 (t), 26.82 (t), 27.11 (t), 27.25 (t), 28.85 (t), 34.87 (t), 43.63 (d), 49.62 (d), 75.23 (s), 117.82 (d), 123.92 (d), 125.83 (d), 135.99 (s). Anal. Calcd for C₁₄H₂₀O: C, 82.30; H, 9.87. Found: C, 82.24; H, 9.91.

13: $R_f 0.35$ (hexane-AcOEt, 5:1); UV (hexane) $\lambda_{max} 211$ nm (ϵ 3109); IR (neat) 3350, 966, 948, 900, 860, 780 cm⁻¹; ¹H NMR (CCl₄) $\delta 0.75$ -2.39 (m, 12 H), 2.43-3.18 (m, 3 H), 5.32-5.60 (m, 1 H), 5.62-5.86 (m, 2 H); ¹³C NMR (CDCl₃) $\delta 20.19$ (t), 26.80 (t), 29.72 (t), 31.30 (t), 31.57 (t), 34.40 (t), 45.78 (d), 48.46 (d), 86.00 (s), 118.19 (d), 124.52 (d), 124.63 (d), 135.84 (s). Anal. Calcd for C₁₃H₁₈O: C, 82.06; H, 9.53. Found: C, 82.01; H, 9.48.

15: R_f 0.5 (hexane-AcOEt, 4:1); UV (hexane) λ_{max} 273 nm (ϵ 704), 267 (722), 224 (8396), 218 (8043); IR (neat) 3370, 1500, 940, 922, 818, 782, 740 cm⁻¹; ¹H NMR (CCl₄) δ 0.82 (s, 3 H), 1.35–2.50 (m, 7 H), 3.18–3.42 (br s, 3 H), 5.50–5.70 (m, 1 H), 6.93–7.57 (m, 4 H). Anal. Calcd for C₁₅H₁₈O: C, 84.07; H, 8.47. Found: C, 83.89; H, 8.35.

16: $R_f 0.4$ (hexane-AcOEt, 4:1); mp 131-132 °C; UV (hexane) $\lambda_{max} 273$ nm (ϵ 667), 266 (629), 213 (7315); IR (KBr) 3280, 1588, 1500, 938, 745 cm⁻¹; ¹H NMR (CCL₄) δ 0.90 (s, 1 H), 1.15 (s, 3 H), 1.06-2.01 (m, 8 H), 2.21-3.12 (m, 4 H), 6.81-7.10 (m, 4 H); ¹³C NMR (CDCl₃) δ 21.24 (q), 23.09 (t), 29.18 (t), 33.98 (t), 35.47 (d), 37.88 (t), 43.16 (d), 48.78 (d), 72.85 (s), 125.48 (d), 125.52 (d), 128.27 (d), 128.90 (d), 135.79 (s), 136.56 (s). Anal. Calcd for C₁₈H₂₀O: C, 83.29; H, 9.32. Found: C, 83.16; H, 9.45.

18: R_f 0.6 (hexane-AcOEt, 2:1); mp 104-105 °C; UV (hexane) λ_{max} 264 nm (ϵ 501), 215 (7145); IR (KBr) 3300, 1595, 1470, 975, 920, 765, 700 cm⁻¹; ¹H NMR (CCl₄) δ 0.99 (s, 3 H), 1.35 (s, 3 H), 1.70-2.05 (m, 2 H), 2.75-3.45 (m, 5 H), 5.90-6.40 (m, 2 H), 6.99 (br s, 3 H); ¹³C NMR (CDCl₃) δ 21.24 (q), 28.13 (t), 30.63 (t), 38.50 (t), 46.22 (d), 71.95 (s), 125.55 (d), 125.61 (d), 125.81 (d), 125.98 (d), 126.10 (d), 133.21 (s), 134.17 (s), 135.57 (s). Anal. Calcd for C₁₄H₁₆O: C, 83.96; H, 8.05. Found: C, 83.67; H, 8.08.

20: mp 141–142 °C; UV (hexane) λ_{max} 273 nm (ϵ 684), 266 (718), 258 (859), 234 (3602), 213 (7490); IR (KBr) 3350, 1500, 992, 940, 852, 843, 784, 763, 759, 680 cm⁻¹; ¹H NMR (CCL) δ 1.09 (s, 3 H), 1.43–1.64 (br s, 1 H), 1.57–2.38 (m, 4 H), 2.49–2.91 (m, 1 H), 2.64–2.73 (m, 2 H), 3.04–3.45 (m, 1 H), 3.21–3.38 (br s, 2 H), 5.82–6.04 (br s, 2 H), 6.99–7.37 (m, 4 H); ¹³C NMR (CDCl₃) δ 21.78 (q), 31.01 (t), 33.88 (t), 34.20 (t), 40.99 (d), 41.82 (t), 49.46 (d), 74.77 (s), 123.28 (s), 124.74 (d), 125.59 (d), 125.89 (d), 126.01 (d), 127.25 (s), 127.59 (d), 127.96 (d), 132.81 (s), 137.82 (s). Anal. Calcd for C₁₈H₂₀O: C, 84.99; H, 8.72. Found: C, 85.12; H, 8.55.

22: $R_f 0.3$ (hexane-AcOEt, 5:1); mp 64–65 °C; IR (KBr) 3300, 947, 930, 878, 820 cm⁻¹; ¹H NMR (CCl₄) δ 1.00 (s, 3 H), 1.10–2.83 (m, 10 H), 1.73 (s, 3 H), 5.39–5.64 (m, 2 H); ¹⁸C NMR (CDCl₃) δ 21.45 (q), 22.95 (q), 24.03 (t), 31.40 (t), 34.38 (t), 41.65 (t), 49.85 (d), 74.89 (s), 118.42 (d), 118.60 (d), 133.05 (s), 135.89 (s). Anal. Calcd for C₁₂H₁₈O: C, 80.85; H, 10.18. Found: C, 80.79; H, 10.31.

24: $R_f 0.35$ (hexane-AcOEt, 5:1); IR (neat) 3400, 1618, 968, 924, 891, 861, 842, 818, 786, 717, 700 cm⁻¹; ¹H NMR (CCL₄) δ 0.96 (s, 3 H), 1.01 (d, 3 H, J = 5 Hz), 1.28–2.21 (m, 7 H), 2.40–2.96 (m, 2 H), 5.16–5.44 (m, 1 H), 5.49–5.93 (m, 2 H). Anal. Calcd for C₁₂H₁₈O: C, 80.85; H, 10.18. Found: C, 80.98; H, 10.35.

25: $R_f 0.45$ (hexane-AcOEt, 5:1); mp 74-76 °C; IR (KBr) 3400, 979, 961, 918, 900, 883, 836, 825, 790, 743 cm⁻¹; ¹H NMR (CCl₄) δ 1.00 (s, 3 H), 1.10–2.36 (m, 7 H), 1.89 (s, 3 H), 2.42–2.75 (br s, 3 H), 5.26–5.61 (m, 2 H). Anal. Calcd for C₁₂H₁₈O: C, 80.85; H, 10.18. Found: C, 80.77; H, 10.23.

27: R_f 0.4 (hexane-AcOEt, 5:1); mp 95–96 °C; IR (KBr) 3350, 971, 936, 897, 860, 801, 791, 684 cm⁻¹; ¹H NMR (CCl₄) δ 0.95 (s, 3 H), 1.11 (s, 1 H), 1.62 (s, 3 H), 1.28–1.99 (m, 6 H), 2.40–2.75 (br s, 3 H), 5.67–5.85 (m, 2 H); ¹³C NMR (CDCl₃) δ 18.18 (q), 21.42 (t), 23.61 (q), 28.63 (t), 32.89 (t), 41.81 (t), 50.07 (d), 74.93 (s), 123.22 (s), 124.57 (d), 125.91 (d), 128.50 (s). Anal. Calcd for C₁₂H₁₈O: C, 80.85; H, 10.18. Found: C, 80.61; H, 10.30.

29: R_f 0.65 (hexane-AcOEt, 2:1); bp 150 °C (2 mmHg); IR (neat) 3400, 1665, 1622, 1518, 840, 708 cm⁻¹; ¹H NMR (CCL) δ 0.94 (s, 3 H), 1.03–2.80 (m, 10 H), 3.53 (s, 3 H), 4.47–4.81 (m, 1 H), 5.20–5.45 (m, 1 H); ¹³C NMR (CDCl₃) δ 20.99 (q), 23.86 (t), 28.75 (t), 34.02 (t), 41.40 (t), 49.78 (d), 53.71 (q), 74.77 (s), 90.90 (d), 117.14 (t), 136.10 (s), 154.27 (s). Anal. Calcd for C₁₂H₁₈O₂: C, 74.18; H, 9.34. Found: C, 74.34; H, 9.41.

31: R_f 0.3 (hexane-AcOEt, 5:1); UV (hexane) λ_{max} 279 nm (ϵ 341), 272 (369), 211 (3217); IR (neat) 3550, 1670, 983, 795 cm⁻¹; ¹H NMR (CCl₄) δ 0.96 (s, 3 H), 1.06–2.49 (m, 7 H), 2.58–2.83 (br s, 3 H), 3.60 (s, 3 H), 4.68–4.84 (m, 1 H), 5.29–5.44 (m, 1 H). Anal. Calcd for C₁₂H₁₈O₂: C, 74.18; H, 9.34. Found: C, 74.39; H, 9.32.

33: R_f 0.4 (hexane-AcOEt, 5:1); mp 68–71 °C; UV (hexane) λ_{max} 210 nm (ϵ 2472); IR (KBr) 3320, 1660, 967, 935, 892, 822 cm⁻¹; ¹H NMR (CCL) δ 1.02 (s, 3 H), 1.13–2.45 (m, 7 H), 2.55–3.03 (m, 3 H), 5.27–5.46 (m, 1 H), 5.86–6.03 (m, 1 H); ¹⁸C NMR (CDCl₃) δ 21.75 (q), 23.72 (t), 33.78 (t), 33.87 (t), 41.51 (t), 51.39 (d), 74.54 (s), 117.65 (d), 122.06 (d), 131.08 (s), 135.42 (s). Anal. Calcd for C₁₁H₁₆OCl: C, 66.50; H, 7.61; Cl, 17.84. Found: C, 66.34; H, 7.81; Cl, 17.63.

35 (mixture of diastereomers): R_f 0.3–0.4 (hexane–AcOEt, 2:1); IR (neat) 3460, 2252, 922, 798 cm⁻¹; ¹H NMR (CCL₄) δ 0.71–2.68 (m, 19 H). Anal. Calcd for C₁₂H₁₉ON: C, 74.57; H, 9.91; N, 7.25. Found: C, 74.68; H, 10.03; N, 7.06.

37 and 38 (mixture of isomers): R_f 0.45–0.65 (hexane–AcOEt, 1:1); IR (neat) 3450, 2345, 922 cm⁻¹; ¹H NMR (CCL) δ 0.74–2.73 (m, 19 H). Anal. Calcd for C₁₂H₁₉ON: C, 74.57; H, 9.91; N, 7.25. Found: C, 74.72; H, 10.08; N, 7.11.

40 (mixture of diastereomers): R_f 0.45-0.6 (hexane-AcOEt, 2:1); IR (neat) 3500, 1730, 1710, 900 cm⁻¹; ¹H NMR (CCl₄) δ 0.70-2.58 (m, 25 H), 4.51-5.18 (m, 1 H). Anal. Calcd for $C_{15}H_{26}O_3$: C, 70.83; H, 10.30. Found: C, 70.96; H, 10.14.

Hydrogenation of 2. A solution of 2 (3 mmol) and Pd/C (cat.) in EtOH (10 mL) was stirred at room temperature for 6 h under H_2 (1 atm). After the usual workup, the products 4^7 (60%) and 5 (20%) were isolated by column chromatography on silica gel.

4: R_f 0.3 (pentane-Et₂O, 4:1); ¹³C NMR (CDCl₃) δ 21.24 (q), 23.35 (t), 25.53 (t), 26.39 (t), 26.66 (t), 34.13 (t), 34.59 (t), 39.42 (d), 42.86 (t), 53.17 (d), 72.71 (s).

5: $R_f 0.2$ (pentane-Et₂O, 4:1); mp 92-94 °C; IR (KBr) 3340, 945, 900 cm⁻¹; ¹H NMR (CCl₄) $\delta 0.83$ (s, 1 H), 1.13 (s, 3 H), 0.98-2.08 (m, 16 H); ¹³C NMR (CDCl₃) $\delta 20.77$ (q), 21.77 (t), 23.40 (t), 24.67 (t), 26.88 (t), 29.08 (d), 31.60 (t), 32.13 (t), 33.97 (t), 47.81 (d), 72.71 (s). Anal. Calcd for C₁₁H₂₀O: C, 78.51; H, 11.98. Found: C, 78.45; H, 11.94.

Electroreduction of 1 in $(CH_3)_2$ CHOD was carried out by the same method as described above (1/5 scale). The percentage of monodeuterium incorporation on C-7 in the cyclized product 2 (obtained in a 48% yield) was determined to be >95% by ¹H NMR analysis.

Reduction of 1 with Zinc in i-PrOH. A solution of 1 (0.81 g, 5 mmol), zinc powder (1.63 g, 25 mmol), and NaOH (1 g, 25 mmol) in i-PrOH (40 mL) was refluxed for 4 h. After usual workup, 3 was isolated by distillation. The reduction with tin (reflux, 4 h) or Na (25 °C, 6 h) was carried out by the same method.

Reduction of 1 with Na in NH₃-THF. To a solution of 1 (0.16 g, 1 mmol) in liquid NH₃ (10 mL)-THF (2.5 mL)-EtOH (0.4 mL) was added Na (0.23 g) at -70 °C. The mixture was stirred at -70 °C for 1 h and worked up by the usual method.¹⁶ The product 41 was isolated by distillation.

41: bp 105 °C (0.5 mmHg); IR (neat) 3350, 1650, 960 cm⁻¹; ¹H NMR (CDCl₃) δ 1.11 (d, 3 H, J = 6 Hz), 0.88–2.20 (m, 7 H), 2.25–2.85 (br s, 4 H), 3.38–3.97 (m, 1 H), 5.22–5.46 (m, 1 H), 5.48–5.83 (m, 2 H). Anal. Calcd for C₁₇H₂₇NO₂: C, 73.61; H, 9.81; N, 5.05. Found: C, 73.53; H, 9.86; N, 4.88.